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Abstract
Physical constraints such as positivity endow the set of quantum states with
a rich geometry if the system dimension is greater than 2. To shed some
light on the complicated structure of the set of quantum states, we consider
a stratification with strata given by unitary orbit manifolds, which can be
identified with flag manifolds. The results are applied to study the geometry of
the coherence vector for n-level quantum systems. It is shown that the unitary
orbits can be naturally identified with spheres in R

n2−1 only for n = 2. In higher
dimensions the coherence vector only defines a non-surjective embedding into
a closed ball. A detailed analysis of the three-level case is presented. Finally,
a refined stratification in terms of symplectic orbits is considered.

PACS numbers: 03.65.−w, 03.65.Bz

1. Introduction

The Bloch vector [1] provides a representation of the quantum states of a two-level system
in terms of real observables, and allows the identification of quantum states with points in a
closed ball in 3D Euclidean space, the Bloch ball, which has proved to be extremely useful.
In quantum information theory, for instance, the states of a single qubit can be identified with
points on the surface of the Bloch ball (if the state is pure) or points inside the ball (if the
state is mixed). Unitary operations can be interpreted as rotations of this ball, and dissipative
processes as linear or affine contractions of the Bloch ball [1, 2].

Naturally, many efforts have been made to generalize the Bloch ball to higher dimensions
by defining a generalized coherence vector similar to the Bloch vector for two-level systems.
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However, while it is easy to define a Bloch [3] or general coherence vector [4, 5] for N-level
systems, it has become clear that the geometry of quantum states in higher dimensions is
far more complex than in the two-level case. Some efforts have been made at determining
the set of Bloch vectors corresponding to physical states for higher dimensional systems
using the higher trace invariants or Casimir invariants, for instance by Kimura [6], who also
demonstrated the complicated and asymmetric structure of the set of Bloch vectors in higher
dimensions. Byrd and Khaneja [7] independently provided a similar characterization of the
positivity of the density matrix in terms of the coherence vector representation.

In this paper we pursue a different approach to study the structure of quantum states for
higher dimensional systems, and the origin of the difference between the two-level case and
higher dimensions. In section 2, we define a natural stratification of the set of density matrices
in terms of unitary orbits. We show that the unitary orbits can be identified with flag manifolds
and determine their dimensions. For two-level systems this stratified set can be identified
with a smooth real manifold with boundary, the 3D Bloch ball, with strata given by concentric
spheres.

In section 3 we briefly review the definition of the Bloch vector and define a general
coherence vector, which can be naturally embedded into a closed ball in R

n2−1. This
embedding is surjective for two-level systems, hence allowing the identification of physical
states with points in this closed ball. We show that for higher dimensional systems, however,
the embedding is never surjective due to positivity constraints, and the dimensions of the
orbit manifolds vary depending on the multiplicities of the eigenvalues of the states in each
stratum. Furthermore, for two-level systems there exists a total ordering of the strata given
by the length of the Bloch vector, or the distance of the unitary orbit from the centre of the
Bloch ball—the Bloch vector of pure states has length one, and the shorter the Bloch vector,
the more mixed the state is. For higher dimensional systems we show that the length of the
coherence or generalized Bloch vector is no longer a sufficient measure for the disorder of the
system. A detailed analysis of the three-level case concludes section 3.

Finally, in section 4 we briefly consider a refined stratification of the set of density
matrices defined by the action of the symplectic group. The symplectic group is of interest
because it occurs naturally for quantum systems with certain dynamical symmetries (such as
atomic systems with degenerate energy levels) and it is the only proper subgroup of the unitary
group that acts transitively on certain unitary orbits [10]. We show that the symplectic orbits of
pseudo-pure states agree with the unitary orbits and provide bounds on the dimensions of other
symplectic orbits, showing that the symplectic orbits generally have much lower dimension.
From a control point of view this means that a 2n-dimensional Hamiltonian control system
with dynamical Lie group Sp(n) is pure-state controllable but we cannot control generic
ensembles.

2. Density matrices and unitary orbits

Throughout this paper we restrict our attention to quantum systems whose Hilbert space is
a finite-dimensional complex vector space C

n, where n is an integer greater than 1, and for
simplicity we will often use V to denote C

n with the standard Hermitian inner product 〈·, ·〉.
Any physical state of this system can be represented by a density operator, i.e., a positive
semi-definite (self-adjoint) linear operator with trace 1. The subset of rank-1 density operators
corresponds to pure states of the system, all other density operators to mixed states.

In the following we denote the set of all positive semi-definite operators on V by P(V ), the
subset of all density matrices by D(V ), and the subset of pure states by D1(V ). We also define
the class of pseudo-pure states or pure-state-like ensembles as the set of density operators
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D1′(V ) whose spectrum consists of exactly two distinct eigenvalues with multiplicities 1 and
n − 1, respectively. It is well known that D(V ) forms a convex subset of the set of Hermitian
matrices since given two density matrices ρ1, ρ2 ∈ D(V ), the straight line path defined by
�(t) := (1 − t)ρ1 + tρ2 for t ∈ [0, 1] is contained in D(V ). To see this, note that �(t) is
Hermitian, Tr(�(t)) = 1 and 〈�(t)x | x〉 = (1 − t)〈ρ1x | x〉 + t〈ρ2x | x〉 � 0 for all x ∈ C

n

and t ∈ [0, 1].
We define the orbit of a quantum state ρ under the action of the dynamical Lie group G

to be the set G · ρ := {g · ρ · g−1 | g ∈ G}. The orbits endow the set of quantum states
with the structure of a stratified set. In principle, any Lie group G acting on the set of density
operators defines a stratification of D(V ). However, the orbits under the action of G = U(n)

are of particular interest since they determine the most general evolution of the quantum states
in a closed system. From a control point of view, the unitary orbit of a state represents the
maximal set of states that are reachable from the given state via (open-loop) coherent control,
or in the language of quantum computing, by applying a unitary gate to the state.

Before we attempt to classify the orbits, we recall the following standard result from
linear algebra:

Proposition 1. Let ρ1 and ρ2 be two density matrices. The following are equivalent:

(i) ρ1 and ρ2 are unitarily equivalent, i.e., ρ2 = Uρ1U
† for some unitary matrix U.

(ii) ρ1 and ρ2 have the same spectrum, i.e., the same eigenvalues including multiplicity.
(iii) Tr

(
ρr

1

) = Tr
(
ρr

2

)
for all r = 1, 2, . . . , n.

This result shows immediately that the orbit of a density matrix under U(n) is uniquely
determined by its spectrum, i.e., two density matrices belong to the same unitary orbit if and
only if they have the same eigenvalues λi with the same multiplicities ni . Each orbit O can
therefore be represented by a canonical diagonal density matrix of the form

ρ = diag
(
λ1In1 , . . . , λrInr

)
(1)

where the eigenvalues shall be ordered such that λi > λj for i < j to ensure a unique
representation. Since the λi can be arbitrary real numbers in [0, 1] provided they satisfy∑r

i=1 niλi = 1, we see immediately that there are infinitely many distinct orbits corresponding
to the (uncountably) infinitely many possible choices for the λi . Thus, we can say that the
unitary group U(n) partitions the set of density matrices D(V ) into an uncountably infinite
family of (distinct) orbits or strata.

We can define a (partial) ordering on this stratification via majorization. Let ρ1, ρ2 be two
density operators with eigenvalues a(i)

m , i = 1, 2, counted with multiplicity and ordered in a
non-increasing sequence. ρ1 ≺ ρ2 if

k∑
m=1

a(1)
m �

k∑
m=1

a(2)
m k = 1, . . . , n − 1

n∑
m=1

a(1)
m =

n∑
m=1

a(2)
m .

(2)

For instance, ρ1 = 1
5 diag(1, 1, 3) ≺ ρ2 = 1

5 diag(2, 2, 1) since 1 � 2, 1 + 1 � 2 + 2 and
1 + 1 + 3 = 2 + 2 + 1. Majorization has been shown to be a useful way to compare the degree of
disorder of physical systems [8] and naturally defines a partial ordering on the unitary orbits
(strata) via O1 ≺ O2 if Oi = O[ρi] and ρ1 ≺ ρ2. However, note that only some orbits can be
compared that way. Consider ρ1 = 1

8 diag(5, 2, 1) and ρ2 = 1
8 diag(4, 4, 0). We have 5 > 4

but 5 + 2 < 4 + 4. Hence, neither orbit majorizes the other.
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To determine the nature of the strata given by the orbits, we define the isotropy subgroup
or stabilizer at ρ as the subgroup Gρ of elements in G that leave ρ invariant, i.e., for which
we have g · ρ · g−1 = ρ. We shall show that the orbit of an element ρ ∈ D(V ) under the
unitary group U(n) can be identified with a certain type of manifold called a flag manifold.
For the purpose of proving this result we observe that U(n) is a compact Lie group and hence
a compact topological group5 and the space of density matrices is a Hausdorff space6, and we
have the following result (see [9], for instance):

Proposition 2. If G is a compact topological group acting on a Hausdorff space X and Gx is
the isotropy group at x then the map φ : G/Gx �→ G · x is a homeomorphism.

Theorem 1. Let U(n) act on D(V ) by conjugation and ρ be a quantum state with r � 1
distinct eigenvalues λi with (geometric) multiplicity ni . Then the orbit of ρ is homeomorphic
to the flag manifold

U(n)/[U(n1) × U(n2) × · · · × U(nr)]

of real dimension n2 − ∑r
i=1 n2

i .

Proof. Let Ei be the eigenspaces of ρ with dimEi = ni . Since ρ is unitarily equivalent to the
diagonal matrix diag

(
λ1In1 , . . . , λrInr

)
, we have an orthogonal direct sum decomposition of

V = C
n of the form V = E1 ⊕ · · · ⊕ Er . g ∈ U(n) stabilizes ρ if and only if g preserves

the eigenspaces Ei , i.e., the restriction of g to each eigenspace must be an isometry, i.e., g

preserves the eigenspaces Ei . Hence, the orbit of ρ is homeomorphic to the flag manifold
U(n)/[U(n1) × U(n2) × · · · × U(nr)] by proposition 2. �

Corollary 1. If ρ ∈ D1′(V ) (pseudo-pure state) then the orbit of ρ is homeomorphic to
U(n)/[U(1) × U(n − 1)], which is homeomorphic to the complex projective space CP

n−1.

To illustrate the result, we explicitly compute the orbits under the action of U(n) for n = 2
and n = 3.

Example 1. Let ρ be a 2 × 2 density matrix. ρ is unitarily equivalent to diag(r, 1 − r) with
0 � r � 1. If r = 1 − r then ρ = I2/2 and the orbit of ρ is homeomorphic to U(2)/U(2),
i.e., a single point. Otherwise, its orbit is homeomorphic to U(2)/[U(1) × U(1)] 	 CP

1.
Since CP

1 is diffeomorphic to the sphere S2, this shows that any U(2) orbit of a two-level
system is homeomorphic to S2, except the trivial orbit of the completely random ensemble
I2/2 which consists of a single point.

Furthermore, note that the requirement of positivity of ρ reduces to 0 � r � 1 and hence
r2 � r , or equivalently, Tr(ρ2) = r2 + (1 − r)2 = 1 − 2r + 2r2 � 1 − 2r + 2r = 1. We
shall see that this implies that the set of all 2 × 2 density matrices (the union of all orbits) is
homeomorphic to a closed ball in R

3.

Thus, we have a neat mathematical justification for the Bloch ball description of a two-
level system, which will be discussed in detail later.
5 A topological group is a topological space X endowed with a group structure that allows us to ‘multiply’ elements
of the space and compute inverses such that both operations are continuous with respect to the topology. The unitary
group, for instance, is a multiplicative group since multiplication of two unitary matrices gives a unitary matrix,
every unitary matrix has an inverse given by the Hermitian conjugate, and the identity provides a neutral element.
Furthermore, as a subset of the complex matrices the unitary group is naturally endowed with a topology that allows
us to separate two unitary matrices by open sets, and matrix multiplication and Hermitian conjugation are continuous
with respect to this topology.
6 A Hausdorff space basically is a space endowed with a topology that allows us to separate points by disjoint open
sets.
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Table 1. Manifolds and their dimension for the unitary orbits of quantum states based on their
canonical form.

Manifold Dim.

n = 3
ρ = diag(a, a, a) point 0
ρ = diag(a, b, b) U(3)/[S1 × U(2)] 4
ρ = diag(a, b, c) U(3)/[S1 × S1 × S1] 6

n = 4
ρ = diag(a, a, a, a) point 0
ρ = diag(a, b, b, b) U(4)/[S1 × U(3)] 6
ρ = diag(a, a, b, b) U(4)/[U(2) × U(2)] 8
ρ = diag(a, b, c, c) U(4)/[S1 × S1 × U(2)] 10
ρ = diag(a, b, c, d) U(4)/[S1 × S1 × S1 × S1] 12

All parameters a, b, c, . . . are in [0, 1] such that Tr(ρ) = 1 and different letters represent different
values.

Example 2. Let ρ be a 3 × 3 density matrix. If ρ has only one eigenvalue with multiplicity 3
then ρ = I3/3 and its orbit is homeomorphic to U(3)/U(3), which is a single point as before.

If ρ has two distinct eigenvalues then it is a pseudo-pure state unitarily equivalent to
ρ = diag(1 − 2a, a, a) where 0 � a � 1 and a 
= 1/3. Its isotropy subgroup is therefore
U(1) × U(2), and its orbit is homeomorphic to U(3)/[U(1) × U(2)] and has dimension
9 − 1 − 4 = 4.

If ρ is a generic ensemble with three distinct eigenvalues a, b, c, then its canonical form
is ρ = diag(a, b, c) and its isotropy subgroup is U(1) × U(1) × U(1). Hence, its orbit is
homeomorphic to U(3)/[U(1) × U(1) × U(1)] and has real dimension 9 − 3 = 6.

The results of the previous example are summarized in table 1. The table also provides a
complete classification of the orbits for n = 4.

The previous two examples clearly show the difference between two-level systems and
higher dimensional systems (n > 2). While all orbit manifolds (except the trivial orbit of the
completely random ensemble) for two-level systems are homeomorphic to a sphere, no such
homeomorphism is possible in the latter case, i.e., the orbit manifolds for higher dimensional
systems can never be identified with spheres in a higher dimensional Euclidean space. That
is, although we can always embed the quantum states of the system in a compact subset
(closed ball) of a real vector space of sufficiently high dimension, there is no one-to-one
correspondence between spheres in this ball and orbits of quantum states, except for n = 2,
which explains the difficulties one encounters when trying to generalize intuitive reasoning
valid for the Bloch ball for n = 2 to Bloch vectors in higher dimensions.

3. Coherence vector and embeddings of quantum states

3.1. Definition of Bloch or coherence vector

For a two-level system any density operator can be expanded as

ρ = 1
2 (I2 + xσx + yσy + zσz)

where I2 is the 2D identity matrix, and σx = |1〉〈2| − |2〉〈1|, σy = i(|1〉〈2| + |2〉〈1|) and
σz = i(|1〉〈1| − |2〉〈2|) are the usual (unnormalized) 2D Pauli matrices. The coordinates
x, y and z are real since the Pauli matrices are Hermitian and ∗ = Tr(ρσ∗) for ∗ = x, y, z.
Hence, the state of any two-level system can be characterized completely by the real vector
s = (x, y, z), called the Bloch vector.
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For an n-level system we can proceed in a similar fashion. Let

σx
r,s = |r〉〈s| − |s〉〈r| σy

r,s = i(|r〉〈s| + |s〉〈r|)

σ z
r = i

√
2/(r + r2)

(
r∑

k=1

|k〉〈k| − r|r + 1〉〈r + 1|
)

(3)

for 1 � r � n − 1 and r < s � n be the generalized Pauli matrices in dimension n. The
set {σ̃k}n2−1

k=1 = {
σx

r,s , σ
y
r,s , σ

z
r

∣∣ 1 � r < n, r < s � n
}

forms a basis for the space of n × n

traceless Hermitian matrices satisfying the orthogonality condition

〈σ̃k | σ̃�〉 = Tr(σ̃kσ̃�) = 2δk,�. (4)

Every density matrix can be expanded with respect to this basis

ρ = 1

n
In +

1

2

n2−1∑
k=1

s̃kσ̃k (5)

where s̃k = Tr(ρσ̃k) for k = 1, . . . , n2 − 1. The resulting real vector s̃ = (s̃k)
n2−1
k=1 is the Bloch

vector of the n-dimensional system.
Although the Bloch vector defined above is useful, it is generally more elegant, and often

more convenient, to work with an orthonormal basis. To this end, we define the normalized

Pauli matrices {σk}n2−1
k=1 = {

1√
2
σ̃k

}n2−1
k=1 , which satisfy the orthonormality condition

〈σk | σ�〉 = Tr(σkσ�) = δk,�. (6)

Furthermore, {σk | k = 1, . . . , n2 − 1} together with σ0 = In/
√

n forms an orthonormal basis
for all Hermitian n × n matrices, and we can expand any density matrix in terms of this ON
basis

ρ =
n2−1∑
k=0

skσk (7)

where sk = Tr(ρσk) for k = 0, . . . , n2 − 1. Since 1 = Tr(ρ) = √
ns0, we have s0 = 1/

√
n

for all density matrices. Hence, ρ is completely determined by the real n2 − 1 vector
s = (s1, . . . , sn2−1). This vector is often called the general coherence vector. Equations (5)
and (7) are equivalent, and we easily see that s̃ = 2s, i.e., the standard Bloch vector differs
from the coherence vector only by a factor of 2.

Note that our definition of the coherence vector with respect to the generalized Pauli
matrices is not the only one possible. One can define a coherence vector with respect to other
bases as has been considered by various authors in the literature. Although this will change
the coherence vector representation of the states, it does not affect the structure of the set of
density matrices in general.

It is easy to verify that the mapping that takes ρ to the real coherence vector s, or
equivalently the Bloch vector s̃ = 2s, defines an embedding of the density matrices into a
closed ball in R

n2−1 for all n > 1. However, the two-level case is special in that the embedding
defined is surjective. We shall now discuss the nature of the resulting differences between the
n = 2 and n > 2 case, and provide a detailed analysis of the three-level case.

3.2. Bloch ball picture for n = 2

For two-level systems the embedding defined above is not only one-to-one but also surjective,
and hence provides a homeomorphism between orbits of density matrices under U(n) and
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the closed ball of radius 1 (Bloch vector as defined above) or radius 1/2 (coherence vector
as defined above) in R

3. Unitary transformations of a density matrix can be interpreted as
real rotations of the ball. Example 1 shows that the action of the unitary group on the set of
quantum states partitions it into an uncountably infinite number of distinct orbit manifolds,
homeomorphic to concentric, two-dimensional spheres in the Bloch ball, with the exception
of the trivial orbit of the completely random ensemble, which is mapped to the single point at
the centre of the ball.

It is also easy to see that the distance of an orbit from the centre of the ball is determined
by Tr(ρ2) via r̃ = 2Tr(ρ2) − 1 (Bloch vector) or r = Tr(ρ2) − 1/2 (coherence vector). Pure
states (Tr(ρ2) = 1) have maximal distance from the centre of the ball and hence form its
boundary. Furthermore, the disorder of an orbit is completely determined by its distance r(O)

from the centre, i.e., O1 ≺ O2 if r(O1) < r(O2).
From the point of view of controllability of quantum systems, it is also worth noting that

all orbits (with the exception of the completely random ensemble) have the same dimension
and geometry. Hence, any group that acts transitively on the class of pure states, for instance,
will also act transitively on all classes of mixed states and vice versa. Of course, the only such
groups are U(2) or SU(2). Hence, pure-state and mixed-state controllability are equivalent
notions for two-level systems.

3.3. Bloch ball picture for n > 2

For n > 2 the situation is quite different due to the fact that the embedding into a closed ball
in R

n2−1 defined by ρ �→ s is not surjective. It is easy to see that the distance of each unitary
orbit from the centre in R

n2−1 remains completely determined by Tr(ρ2):

‖s‖2 =
n2−1∑
k=1

s2
k = Tr(ρ2) − 1

n
. (8)

However, a glance at the dimensions of the orbits in table 1 shows immediately that each orbit
is only a submanifold of a sphere of a fixed distance from the origin. For instance, as we
have shown in the previous section, the orbit of pure states for n = 3 corresponds to a four-
dimensional submanifold of the seven-dimensional boundary sphere with radius

√
1 − 1/3

in R
8. Since there is only a single orbit of pure states, the remainder of the points on the

boundary sphere do not correspond to physical states.
For mixed states the situation is more complicated since each sphere of fixed radius r

from the origin now generally contains an uncountably infinite number of distinct orbits,
all satisfying Tr(ρm) = 1 and Tr

(
ρ2

m

) = r2 but differing in higher trace invariants, e.g.,
Tr

(
ρk

m

) 
= Tr
(
ρk

m′
)

for some 2 < k � n. The dimensions of the orbits contained within each
sphere vary depending on the type of ensemble but each sphere (except for the boundary)
generally contains a set of positive measure of orbits corresponding to physical states, and
often a positive-measure set of points that do not belong to physical orbits. Moreover, the
degree of disorder of an orbit can no longer be properly characterized by its distance from the
centre of the ball. Orbits contained in the same sphere can often not be compared with respect
to our partial ordering and may have different von-Neumann entropy. Furthermore, orbits at
different distances from the origin may have the same von-Neumann entropy.

3.4. Analysis of the n = 3 case

To illustrate the general statements above, let us consider the n = 3 case and the set of orbits
determined by the family of states ρ = diag(a, b, c) with b, c given by

b = 1
2 (1 − a + K) c = 1

2 (1 − a − K) K =
√

−1 + 2a − 3a2 + 2c2.
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Note that we have Tr(ρ) = a + b + c = 1 and Tr(ρ2) = c2 for all a. However, for ρ to
represent a physical state a, b, c must be real and have values in [0, 1]. These constraints imply
that the argument of K must be non-negative and K � 1 − a, or equivalently K2 � (1 − a)2.
This yields the inequalities

3a2 − 2a + 1 � 2c2 (9)

2a2 − 2a + 1 � c2 (10)

which must be simultaneously satisfied. To ensure that there is a one-to-one correspondence
between parameter values (a, c2) and orbits, we further require a � b � c. Since a +b+c = 1
it implies a � 1/3. The constraint b � c is automatically satisfied because K is real and �0,
whereas the constraint a � b implies

6a2 − 4a + 1 � c2. (11)

Inequality (9) is satisfied for

a ∈
[

1 − K1

3
,

1 + K1

3

]

for K1 = √
6c2 − 2. Inequality (11) is satisfied for

a ∈
[

0,
1 − K1/6

3

]
∪

[
1 + K1/6

3
, 1

]
.

For c2 � 1/2, inequality (10) is satisfied for a ∈ [0, 1], and for c2 > 1/2 it is satisfied for

a ∈
[

0,
1 − K2

2

]
∪

[
1 + K2

2
, 1

]

for K2 = √
2c2 − 1. Combining these inequalities and noting that a � 1/3 leads to

c2 � 1
2 : a ∈ [

1
3 (1 + K1/6), 1

3 (1 + K1)
]

(12)

c2 > 1
2 : a ∈ [

1
2 (1 + K2),

1
3 (1 + K1)

]
. (13)

Figure 1 illustrates the situation. The solid curve corresponds to 3a2 − 2a + 1 = 2c2, the
dash-dot line to 6a2 − 4a + 1 = c2 and the dashed line to 2a2 − 2a + 1 = c2. The points (a, c2)

on the solid line correspond to orbits of pseudo-pure states ρ = diag
(
a, 1

2 (1 − a), 1
2 (1 − a)

)
,

and the points on dash-dot line correspond to orbits of pseudo-pure states of the form
ρ = diag(a, a, 1 − 2a). The points below the solid curve correspond to non-Hermitian
matrices. The points (a, c2) above the dashed line correspond to non-positive Hermitian
matrices. The points between these two curves represent physical states. However, only
points in the shaded region between the curves satisfy all inequalities and represent unique
orbits.

The figure also shows that for any c2 ∈ (1/3, 1), there exists a positive-measure set
(interval) of a-values that correspond to distinct physical orbits, embedded in a sphere of
fixed radius r = √

c2 − 1/3 from the origin. This shows that the number of distinct orbits
contained within each sphere of radius 0 < r <

√
2/3 is uncountably infinite. A unique orbit

of fixed distance from the centre of the ball exists only for the special cases c2 = 1/3 and
c2 = 1, the former corresponding to the trivial (i.e., zero-dimensional) orbit of the completely
random ensemble a = b = c = 1/3 that forms the centre of the ball, and the latter to the
four-dimensional orbit of pure states contained within the boundary sphere of the ball. Most
of these orbits are generic and hence have dimension 6. However, each sphere also contains



Orbits of quantum states and geometry of Bloch vectors for N-level systems 1397

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

c 2

2c
2
 = (3a2–2a+1)

c
2
 = 2a2–2a+1 

6a2–4a+1 

Non–Hermitian operators 

Non–positive Hermitian operators 

positive Hermitian operators 

Figure 1. Diagram indicating parameter values corresponding to physical orbits.

at least one (two if c2 � 1/2) pseudo-pure orbits of dimension 4, corresponding to the points
(a, c2) on the boundary curves 2c2 = 3a2 − 2 + 1 and c2 = 6a2 − 4 + 1, respectively.

Furthermore, for c2 � 1/2 all values of (a, c2) that correspond to Hermitian matrices
actually correspond to positive Hermitian operators, i.e., physical states. Hence, the union of
all orbits with c2 � 1/2 fills a ball of radius 1/

√
6. For c2 � 1/2, however, the positivity

constraint kicks in and eliminates more and more a-values as c2 approaches 1. This means
that the physical orbits inside the ball get sparser as c2 increases. However, for each c2 < 1
the orbits always occupy a positive measure set of the sphere S7 they are embedded in since
for each c2 < 1 there is a 1D set of positive measure of a values representing disjoint physical
orbits of dimension 6. Hence, the union of these orbits (not counting the one or two pseudo-
pure orbits) occupies a set of positive measure inside each seven-dimensional sphere S7. For
c2 = 1 the positivity constraint eliminates all a-values but a = 1 and hence the boundary
sphere contains only the single four-dimensional orbit of proper pure states.

As regards the ordering of orbits, we have O[a, c2] ≺ O[a, c′
2] if c2 < c′

2 since
K(a, c2) < K(a, c′

2) for c2 < c′
2 and a fixed. In general, however, we cannot compare

orbits that have the same distance from the origin since a + b = 1
2 (1 + a + K) is monotonically

decreasing over the valid range of a for c2 > 1/2, and non-monotonic for c � 1/2, i.e., a < a′

typically implies a + b > a′ + b′. See figure 2 for a plot of a + b = 1
2 (1 + a + K) as a function

of a for various values of c2. Figure 3, for comparison, shows a plot of the von-Neumann
entropy of the orbits S[O] = −[a log(a) + b log(b) + c log(c)] as a function of the largest
eigenvalue a for various values of c2. Note that for c2 � 1/2 fixed, the von-Neumann entropy
increases as a function of a, and for c < 1/2 it is non-monotonic as a function of a. Also note
that for sufficiently large values of S, there are many orbits of varying distance from the centre
with the same von-Neumann entropy S although for fixed a the orbits with the largest distance
from the centre have the smallest entropy, which is in accord with our partial ordering of
the orbits.

4. Actions of the symplectic group

In the previous sections we have shown that the action of the unitary group on the set of
quantum states endows it with the structure of a stratified set and studied the properties of the
strata defined by the unitary orbit manifolds. This stratification of the set of density matrices
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Figure 3. von-Neumann entropy of orbits as a function of a for various values of c2.

was justified on physical grounds since the dynamics of a (closed) quantum system is usually
determined by the action of the unitary group.

Some physical systems, however, exhibit symmetries that restrict the dynamics to a proper
subgroup of the unitary group. For instance, the dynamics of an atomic system comprising two
n-fold degenerate energy levels subject to coherent control fields of various polarizations is
governed by the symplectic group Sp(n) due to dynamical symmetries [10]. Physical systems
that exhibit symplectic symmetry are also of special interest in quantum control since they
are pure-state controllable but lack mixed-state controllability [10]. This means, for instance,
that we can steer the system from any pure initial state to any other pure state; however, if the
system is initially in a mixed state, then it may not be possible to steer it to another mixed state
even if this state is unitarily equivalent to the initial state, since the set of unitary operations at
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our disposal is limited and there may not be a sympletic unitary transformation that achieves
the desired aim [11].

The action of the symplectic group also induces a stratification of the set of density
matrices. Since the sympletic group Sp(n) is a subgroup of the unitary group U(2n), it
naturally follows that the sympletic orbits are smaller than the unitary orbits. Hence, there
will be more sympletic orbits. We can also think of the action of the symplectic group
as partitioning the unitary orbits into symplectic suborbits. The stratification induced by
the symplectic group is therefore a refinement of the stratification induced by U(2n). The
remainder of this section is devoted to exploring the relation between the symplectic and
unitary orbits/stratification.

Mathematically, the symplectic group Sp(n) is the subgroup of unitary transformations
A ∈ U(2n) that satisfy AT JA = J for

J =
(

0 In

−In 0

)
(14)

where In is the identity matrix in dimension n. Note that, technically, any group G that satisfies
{ST JS = J | ∀S ∈ G} for a matrix J unitarily equivalent to the J in (14) is a representation
of Sp(n) but we shall assume the standard representation with J as in (14) here. The condition
ST JS = J then implies that any 2n × 2n complex matrix S ∈ Sp(n) must be of the form

S =
(

A B

−B∗ A∗

)
(15)

where A and B are n × n complex matrices and A∗ denotes the complex conjugate of the A.
We now show that Sp(n) acts transitively on the unitary orbits of some states, but for the

majority of states the symplectic orbits have lower dimension than the unitary orbits. The
following results are an extension of earlier results showing that Sp(n) acts transitively only
on pure-state-like and completely random ensembles [11].

Proposition 3. If ρ is the completely random ensemble I2n/2n or a pseudo-pure state then
its orbit under Sp(n) is the same as the orbit under U(2n), i.e., Sp(n) acts transitively on this
orbit.

Proof. The orbit of any pseudo-pure state ρ ∈ D1′(V ) under U(2n) is homeomorphic to
CP

2n−1 by corollary 1. The assertion that Sp(n) acts transitively on the unitary orbits of
pseudo-pure states hence follows directly from the well-known fact that Sp(n) acts transitively

on CP
2n−1 via the isomorphism φ : H

n
∼=→ C

2n discussed in appendix A. Since the orbit of
ρ = I2n/2n under U(2n) consists of a single point, the assertion that Sp(n) acts transitively
on this orbit is trivial. �

Proposition 4. Let ρ = diag(λ1, . . . , λ2n) where 0 � λi � 1 are the eigenvalues of ρ counted
with multiplicity, satisfying

∑2n
i=1 λi = 1. Then the orbit of ρ is a homogeneous manifold of

real dimension at most 2n2.

Proof. Since ρ is diagonal the isotropy subgroup Gρ contains the maximal torus T n of Sp(n),
namely all matrices of the form diag(z1, . . . , zn, z1, . . . , zn) with zi ∈ U(1) 	 S1. Since Gρ is
a closed subgroup of the Lie group Sp(n), proposition 2 implies that the orbit is a homogeneous
manifold of real dimension no more than dimR(Sp(n)/T n) = n(2n + 1) − n = 2n2. �

For certain special cases we can improve this bound on the orbit dimensions.
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Table 2. Dimensions of the orbits of various types of ensembles classified by their spectrum under
the unitary group U(2n) and the symplectic group Sp(n) for n = 2 and n = 3. The orbits under
the symplectic group are in general much smaller than the orbits under the unitary group, except
in the case of pure-state-like (and completely random) ensembles, for which the sympletic orbits
have the same dimension as the unitary orbit. Note that in all cases it is assumed that different
letters a, b, . . . represent different values in [0, 1].

N = 4 U(4) Sp(2)

ρ = diag(a, a, a, a) 0 0
ρ = diag(a, b, b, b) 6 6
ρ = diag(a, a, b, b) 8 6
ρ = diag(a, b, c, c) 10 �8
ρ = diag(a, b, c, d) 12 �8

N = 6 U(6) Sp(3)

ρ = diag(a, a, a, a, a, a) 0 0
ρ = diag(a, b, b, b, b, b) 10 10
ρ = diag(a, a, b, b, b, b) 16 �21 − 10 = 11
ρ = diag(a, b, c, c, c, c) 18 �21 − 10 = 11
ρ = diag(a, b, b, c, c, c) 22 �2 × 32 = 18
ρ = diag(a, b, c, d, d, d) 24 �18
ρ = diag(a, a, b, b, c, c) 24 �18
ρ = diag(a, a, a, b, b, b) 18 �32 + 3 = 12
ρ = diag(a, b, c, c, d, d) 26 �18
ρ = diag(a, b, c, d, e, e) 28 �18
ρ = diag(a, b, c, d, e, f ) 30 �18

Proposition 5. If ρ = diag(σn, σn) where σn is a diagonal n × n density matrix but not a
multiple of In then the sympletic orbit of ρ is a homogeneous manifold of real dimension at
most 2n2 − 1. If ρ = diag(aIn, bIn) with 0 � a, b � 1 and a 
= b then the orbit of ρ under
Sp(n) is a homogeneous manifold of real dimension n2 + n.

Proof. In the former case, observe that the isotropy subgroup at ρ contains not only the
maximal torus T n, but also all matrices of the form {zJ | z ∈ S1}. Since the matrix J is
not symplectic-equivalent to any element of the maximal torus T n, the first statement follows
immediately from the previous proposition.

In the second case, note that any element Q that belongs to the isotropy subgroup at
ρ must satisfy QρQ† = ρ. Since Q must also be in Sp(n), it must be of the form (15)
for some A,B ∈ endoC(Cn). This implies the matrices A and B must satisfy the relations
aAA† + bBB† = aIn and aBB† + bAA† = bIn and hence ab(a2 − b2)BB† = 0. As
0 < a, b,< 1 and a 
= b by assumption, we must have B = 0 and A ∈ U(n). Thus,
the isotropy subgroup at ρ is

(
A 0

0 A∗
)

with A ∈ U(n). From theorem 1, the orbit of ρ is a
homogeneous manifold of real dimension n(2n + 1) − n2 = n2 + n. �

Proposition 6. If ρ = diag(D2n−2�, αI2�), where D2n−2� is a diagonal (2n − 2�) × (2n − 2�)

complex matrix, I2� is the identity 2� × 2� complex matrix, and α ∈ [0, 1], then the orbit of ρ

is a homogeneous manifold of real dimension at most n(2n + 1) − �(2� + 1).

Proof. We note the isotropy subgroup at ρ contains the group
(

I2n−2� 0

0 Q2�

)|Q ∈ Sp(�)}, which
is isomorphic to the subgroup Sp(�). Hence, the orbit of ρ is a homogeneous manifold of real
dimension at most n(2n + 1) − �(2� + 1) as desired. �

In table 2 we compare the dimensions of the orbits of various types of ensembles under
U(2n) with those of the orbits under Sp(n) for n = 2 and n = 3. The classification of the
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orbits is based on the spectrum of ρ. Note that the spectrum of ρ uniquely determines the
unitary orbit (or equivalence class) ρ belongs to. However, two density matrices with the
same spectrum may belong to different symplectic orbits. For instance, ρ0 = diag(a, b, a, b)

and ρ1 = diag(a, a, b, b) are unitarily equivalent but belong to different orbits under the
symplectic group as defined above. See example 1 in [11].

5. Conclusion

We have shown that the action of a Lie group on the set of quantum states endows it with the
structure of a stratified set with strata given by the orbit manifolds. In particular, we studied the
stratification of the set of states induced by the action of the unitary group, which is especially
useful since the unitary orbits are of interest in quantum control and computing, where they
determine the maximal set of quantum states that are reachable from a given set via a coherent
control or by applying a unitary gate. Furthermore, there are many properties of quantum
states such as von-Neumann or Renyi entropy that depend only on the unitary orbit the state
belongs to. It therefore makes sense to define these functions on the unitary stratification.
We have shown that the unitary orbits can be identified with flag manifolds whose type and
dimension depend only on the multiplicity of the eigenvalues of the states belonging to the
orbit. We have also determined the dimensions of the orbit manifolds and shown that we can
define a partial ordering related to the degree of disorder in the system on this stratification
via majorization.

To better understand the geometry and structure of the set of quantum states, we studied
the embedding of the quantum states and their associated orbit manifolds of an n-level system
into real Euclidean space provided by the coherence vector. We showed that the coherence
vector we defined always maps the quantum states into a closed ball in R

n2−1 in such a manner
that the orbit manifolds are mapped to submanifolds of spheres of fixed radius from the
centre. For n = 2 this embedding is surjective, hence justifying the identification of the set of
quantum states with the closed ball in R

3, and the identification of the orbits with concentric
spheres inside this ball. By comparing the dimensions of the orbits we also showed that this
embedding is no longer surjective for n > 2 and the orbit manifolds in this case are proper
submanifolds of spheres in R

n2−1 of lower dimension. The manifold of pure states is always
a submanifold of the boundary sphere, which contains no other orbits, while all other spheres
of fixed distance from the centre generally contain infinitely many disjoint orbits of varying
dimensions, and depending on the distance of the sphere from the centre, a positive measure
set of points which do not correspond to quantum states at all. A detailed analysis for the
three-level case was provided.

Finally, we studied systems whose natural evolution is restricted to a subgroup of the
unitary group such as the symplectic group due to dynamical symmetries. We showed that we
can define a refined stratification based on the smaller orbits of this subgroup. In the case of
the symplectic group we have shown that the orbits of all pseudo-pure states agree with the
unitary orbits, while the symplectic orbits of all other (mixed) states have lower dimension
than the unitary orbits. From the point of view of control this means that we can control pure
and pseudo pure states for such systems but not generic ensembles.
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Appendix. The symplectic group

The symplectic group Sp(n) is usually defined as the Lie group of automorphisms on H
n,

where H is the skew-field of quaternions, that preserve the canonical symplectic inner product

〈q | q′〉 =
n∑

i=1

q̄iq′
i

where q and q′ are n-vectors whose entries qi are quaternions and conjugation q̄ is over H.
The (skew-field) of quaternions H can be regarded as a vector space over R with the

standard basis {1, e1, e2, e3} subject to the multiplicative relations: e2
i = −1 for 1 � i � 3

and eiej = −ejei = ek for any even permutation (i, j, k) of the set (1, 2, 3). Since the field of
complex numbers C is isomorphic to R · 1 ⊕ R · e1 and every quaternion q can be written as

q = q0 + q1e1 + q2e2 + q3e3 = (q0 + q1e1) + e2(q2 − q3e1)

we may also regard H as a vector space over C with basis {1, e2}. We therefore obtain an
isomorphism φ : H

n → C
2n of complex vector spaces via φ(q1, . . . , qn) = (z1, . . . , z2n)

where qi = zi + zn+ie2. Consequently,

〈q | q′〉 =
n∑

i=1

q̄iq′
i =

(
2n∑

i=1

z∗
i z′

i

)
+ e2

(
n∑

i=1

(ziz′
n+i − zn+iz′

i)

)
.

The isomorphism φ allows us to identify an isometry A of H
n, with a complex

automorphism of C
2n that preserves both the canonical Hermitian inner product and the

canonical skew-symmetric bilinear form on C
2n defined by

S(z, z′) =
n∑

i=1

(ziz′
n+i − zn+iz′

i)

where z = (z1, . . . , z2n) and z′ = (z′
1, . . . , z′

2n).
Since A preserves the canonical Hermitian inner product on C

2n, A ∈ U(2n). Since A

leaves invariant the canonical skew-symmetric bilinear form S(·, ·), it is equivalent to having
AT JA = J .
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